관련서비스

검색

검색

책 메인메뉴

책본문

밑바닥부터 시작하는 딥러닝(DEEP LEARNING FROM SCRATCH)파이썬으로 익히는 딥러닝 이론과 구현

저자
사이토 고키 지음
출판사
한빛미디어(주) | 2017.01.03
형태
판형 규격外 | 페이지 수 312 | ISBN
원제 : ゼロから作るDEEP LEARNING PYTHONで學ぶディ-プラ-ニングの理論と實裝
ISBN 10-8968484635
ISBN 13-9788968484636
정가
24,00021,600
가격비교 찜하기 eBOOK구매

인터넷서점 (총 8건) 더보기

이 책은 어때요? 7명 참여

평점 : 7 . 0

필독

비추 1 2 3 4 5 6 7 8 9 10 필독

이 책을 언급한 곳

리뷰 0 | 서평 0 | 블로그 1

책 정보 별 바로가기 : 책정보  리뷰 (1) 가격비교 (8) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

정보 제공 : YES24 영풍문고 반디앤루니스 인터파크도서 커넥츠북 강컴닷컴

책소개

직접 구현하고 움직여보며 익히는 가장 쉬운 딥러닝 입문서

이 책은 라이브러리나 프레임워크에 의존하지 않고, 딥러닝의 핵심을 ‘밑바닥부터’ 직접 만들어보며 즐겁게 배울 수 있는 본격 딥러닝 입문서이다. 술술 읽힐 만큼 쉽게 설명하였고, 역전파처럼 어려운 내용은 ‘계산 그래프’ 기법으로 시각적으로 풀이했다. 무엇보다 작동하는 코드가 있어 직접 돌려보고 요리조리 수정해보면 어려운 이론도 명확하게 이해할 수 있다. 딥러닝에 새롭게 입문하려는 분과 기초를 다시금 정리하고 싶은 현업 연구자와 개발자에게 최고의 책이 될 것이다.

저자소개

역자 : 개앞맵시(이복연)고려대학교 컴퓨터학과를 졸업하고 삼성소프트웨어멤버십을 거쳐, 삼성전자 소프트웨어센터와 미디어솔루션센터에서 자바 가상 머신, 바다 플랫폼, 챗온 메신저 서비스 등을 개발했다. 주 업무 외에 분산 빌드, 지속적 통합, 앱 수명주기 관리 도구, 애자일 도입 등 동료 개발자들에게 실질적인 도움을 주는 일에 적극적이었다. 그 후 창업 전선에 뛰어들어 소셜 서비스, 금융 거래 프레임워크 등을 개발하다가, 무슨 바람이 불어서인지 책을 만들겠다며 기획?편집자(자칭 Wisdom Compiler)로 변신했다.
『Effective Unit Testing』(한빛미디어, 2013)과 『JUnit 인 액션』(인사이트, 2011)을 번역했다.

〈개발자의 앞길에 맵핵 시전〉, 줄여서 ‘개앞맵시’는 역자가 어려서부터 생각한 후학 양성의 꿈을 조금 독특한 방식으로 일찍 실행에 옮긴 것이다. 현재 모습은 게임, 서버, 웹 등 주요 직군별 개발자에게 꼭 필요한 기술과 역량을 안내하는 책들을 로드맵 형태로 정리한 지도다. 필요할 때 바로 구해볼 수 있도록 판매 중인 도서만을 다룬다.
페이스북 : https://facebook.com/dev.loadmap
로드맵 모음 : https://mindmeister.com/users/channel/wegra
스카이넷도 딥러닝부터 : https://mindmeister.com/812276967/_

목차

1장 헬로 파이썬
1.1 파이썬이란?
1.2 파이썬 설치하기
__1.2.1 파이썬 버전
__1.2.2 사용하는 외부 라이브러리
__1.2.3 아나콘다 배포판
1.3 파이썬 인터프리터
__1.3.1 산술 연산
__1.3.2 자료형
__1.3.3 변수
__1.3.4 리스트
__1.3.5 딕셔너리
__1.3.6 bool
__1.3.7 if 문
__1.3.8 for 문
__1.3.9 함수
1.4 파이썬 스크립트 파일
__1.4.1 파일로 저장하기
__1.4.2 클래스
1.5 넘파이
__1.5.1 넘파이 가져오기
__1.5.2 넘파이 배열 생성하기
__1.5.3 넘파이의 산술 연산
__1.5.4 넘파이의 N차원 배열
__1.5.5 브로드캐스트
__1.5.6 원소 접근
1.6 matplotlib
__1.6.1 단순한 그래프 그리기
__1.6.2 pyplot의 기능
__1.6.3 이미지 표시하기
1.7 정리

2장 퍼셉트론
2.1 퍼셉트론이란?
2.2 단순한 논리 회로
__2.2.1 AND 게이트
__2.2.2 NAND 게이트와 OR 게이트
2.3 퍼셉트론 구현하기
__2.3.1 간단한 구현부터
__2.3.2 가중치와 편향 도입
__2.3.3 가중치와 편향 구현하기
2.4 퍼셉트론의 한계
__2.4.1 도전! XOR 게이트
__2.4.2 선형과 비선형
2.5 다층 퍼셉트론이 출동한다면
__2.5.1 기존 게이트 조합하기
__2.5.2 XOR 게이트 구현하기
2.6 NAND에서 컴퓨터까지
2.7 정리

3장 신경망
3.1 퍼셉트론에서 신경망으로
__3.1.1 신경망의 예
__3.1.2 퍼셉트론 복습
__3.1.3 활성화 함수의 등장
3.2 활성화 함수
__3.2.1 시그모이드 함수
__3.2.2 계단 함수 구현하기
__3.2.3 계단 함수의 그래프
__3.2.4 시그모이드 함수 구현하기
__3.2.5 시그모이드 함수와 계단 함수 비교
__3.2.6 비선형 함수
__3.2.7 ReLU 함수
3.3 다차원 배열의 계산
__3.3.1 다차원 배열
__3.3.2 행렬의 내적
__3.3.3 신경망의 내적
3.4 3층 신경망 구현하기
__3.4.1 표기법 설명
__3.4.2 각 층의 신호 전달 구현하기
__3.4.3 구현 정리
3.5 출력층 설계하기
__3.5.1 항등 함수와 소프트맥스 함수 구현하기
__3.5.2 소프트맥스 함수 구현 시 주의점
__3.5.3 소프트맥스 함수의 특징
__3.5.4 출력층의 뉴런 수 정하기
3.6 손글씨 숫자 인식
__3.6.1 MNIST 데이터셋
__3.6.2 신경망의 추론 처리
__3.6.3 배치 처리
3.7 정리

4장 신경망 학습
4.1 데이터에서 학습한다!
__4.1.1 데이터 주도 학습
__4.1.2 훈련 데이터와 시험 데이터
4.2 손실 함수
__4.2.1 평균 제곱 오차
__4.2.2 교차 엔트로피 오차
__4.2.3 미니배치 학습
__4.2.4 (배치용) 교차 엔트로피 오차 구현하기
__4.2.5 왜 손실 함수를 설정하는가?
4.3 수치 미분
__4.3.1 미분
__4.3.2 수치 미분의 예
__4.3.3 편미분
4.4 기울기
__4.4.1 경사법(경사 하강법)
__4.4.2 신경망에서의 기울기
4.5 학습 알고리즘 구현하기
__4.5.1 2층 신경망 클래스 구현하기
__4.5.2 미니배치 학습 구현하기
__4.5.3 시험 데이터로 평가하기
4.6 정리

5장 오차역전파법
5.1 계산 그래프
__5.1.1 계산 그래프로 풀다
__5.1.2 국소적 계산
__5.1.3 왜 계산 그래프로 푸는가?
5.2 연쇄법칙
__5.2.1 계산 그래프에서의 역전파
__5.2.2 연쇄법칙이란?
__5.2.3 연쇄법칙과 계산 그래프
5.3 역전파
__5.3.1 덧셈 노드의 역전파
__5.3.2 곱셈 노드의 역전파
__5.3.3 사과 쇼핑의 예
5.4 단순한 계층 구현하기
__5.4.1 곱셈 계층
__5.4.2 덧셈 계층
5.5 활성화 함수 계층 구현하기
__5.5.1 ReLU 계층
__5.5.2 Sigmoid 계층
5.6 Affine/Softmax 계층 구현하기
__5.6.1 Affine 계층
__5.6.2 배치용 Affine 계층
__5.6.3 Softmax-with-Loss 계층
5.7 오차역전파법 구현하기
__5.7.1 신경망 학습의 전체 그림
__5.7.2 오차역전파법을 적용한 신경망 구현하기
__5.7.3 오차역전파법으로 구한 기울기 검증하기
__5.7.4 오차역전파법을 사용한 학습 구현하기
5.8 정리

6장 학습 관련 기술들
6.1 매개변수 갱신
__6.1.1 모험가 이야기
__6.1.2 확률적 경사 하강법(SGD)
__6.1.3 SGD의 단점
__6.1.4 모멘텀
__6.1.5 AdaGrad
__6.1.6 Adam
__6.1.7 어느 갱신 방법을 이용할 것인가?
__6.1.8 MNIST 데이터셋으로 본 갱신 방법 비교
6.2 가중치의 초깃값
__6.2.1 초깃값을 0으로 하면?
__6.2.2 은닉층의 활성화 분포
__6.2.3 ReLU를 사용할 때의 가중치 초깃값
__6.2.4 MNIST 데이터셋으로 본 가중치 초깃값 비교
6.3 배치 정규화
__6.3.1 배치 정규화 알고리즘
__6.3.2 배치 정규화의 효과
6.4 바른 학습을 위해
__6.4.1 오버피팅
__6.4.2 가중치 감소
__6.4.3 드롭아웃
6.5 적절한 하이퍼파라미터 값 찾기
__6.5.1 검증 데이터
__6.5.2 하이퍼파라미터 최적화
__6.5.3 하이퍼파라미터 최적화 구현하기
6.6 정리

7장 합성곱 신경망(CNN)
7.1 전체 구조
7.2 합성곱 계층
__7.2.1 완전연결 계층의 문제점
__7.2.2 합성곱 연산
__7.2.3 패딩
__7.2.4 스트라이드
__7.2.5 3차원 데이터의 합성곱 연산
__7.2.6 블록으로 생각하기
__7.2.7 배치 처리
7.3 풀링 계층
__7.3.1 풀링 계층의 특징
7.4 합성곱/풀링 계층 구현하기
__7.4.1 4차원 배열
__7.4.2 im2col로 데이터 전개하기
__7.4.3 합성곱 계층 구현하기
__7.4.4 풀링 계층 구현하기
7.5 CNN 구현하기
7.6 CNN 시각화하기
__7.6.1 1번째 층의 가중치 시각화하기
__7.6.2 층 깊이에 따른 추출 정보 변화
7.7 대표적인 CNN
__7.7.1 LeNet
__7.7.2 AlexNet
7.8 정리

8장 딥러닝
8.1 더 깊게
__8.1.1 더 깊은 네트워크로
__8.1.2 정확도를 더 높이려면
__8.1.3 깊게 하는 이유
8.2 딥러닝의 초기 역사
__8.2.1 이미지넷
__8.2.2 VGG
__8.2.3 GoogLeNet
__8.2.4 ResNet
8.3 더 빠르게(딥러닝 고속화)
__8.3.1 풀어야 할 숙제
__8.3.2 GPU를 활용한 고속화
__8.3.3 분산 학습
__8.3.4 연산 정밀도와 비트 줄이기
8.4 딥러닝의 활용
__8.4.1 사물 검출
__8.4.2 분할
__8.4.3 사진 캡션 생성
8.5 딥러닝의 미래
__8.5.1 이미지 스타일(화풍) 변환
__8.5.2 이미지 생성
__8.5.3 자율 주행
__8.5.4 Deep Q-Network(강화학습)
8.6 정리

부록 A Softmax-with-Loss 계층의 계산 그래프
A.1 순전파
A.2 역전파
A.3 정리
참고문헌

책 정보 별 바로가기 : 책정보  리뷰 (1) 가격비교 (8) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

리뷰

독자리뷰(총 1건)

리뷰쓰기

책 정보 별 바로가기 : 책정보  리뷰 (1) 가격비교 (8) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

가격비교 - 인터넷서점 21,600

이벤트&기획전

가격비교
서점 판매가 → 할인가(할인율) 판매가 할인가란? 적립금(적립률) 구매정보
YES24 바로가기 24,000원21,600원(-10%) 1,200원(5%) 구매하기 무료배송 대한민국1등 인터넷서점! 총알배송, 2천원추가적립, 리뷰포인트지급, 최저가보상
리브로 바로가기 24,000원21,600원(-10%) 1,200원(5%) 구매하기 무료배송 도서 10%할인, 5%추가적립, 배송 중 파손 시 100% 교환보장, 수험서 분철 990원!
교보문고 바로가기 24,000원21,600원(-10%) 1,200원(5%) 구매하기 무료배송 바로드림 최저가 보상, 바로드림/바로배송
영풍문고 바로가기 24,000원21,600원(-10%) 1,200원(5%) 구매하기 무료배송 바로바로 신간 무료배송 / 신규회원 1천원지급 / 영풍문고에서 페이코 첫 결제 5천원할인 / Now드림서비스
도서11번가 바로가기 24,000원21,600원(-10%) 0원(0%) 구매하기 무료배송 [T멤버십 할인/최대1만원,신간도서] 3만원 이상 구매시 1,000포인트 추가 적립
알라딘 바로가기 24,000원21,600원(-10%) 1,200원(5%) 구매하기 무료배송 10% 할인, 신간 사은품 추첨, 1권도 무료당일배송
인터파크 바로가기 24,000원21,600원(-10%) 1,200원(5%) 구매하기 무료배송 당일/하루배송, 최저가 200% 보장, 인터파크 통합 마일리지, 스페셜 사은품선택 서비스
반디앤루니스 바로가기 24,000원21,600원(-10%) 1,200원(5%) 구매하기 무료배송 북셀프 단 한권만 사도 무료배송, 당일배송, 매장에서 바로받는 북셀프 서비스, 최저가 보상, 신규회원 1,000원 적립
단골 인터넷 서점 등록

책 정보 별 바로가기 : 책정보  리뷰 (1) 가격비교 (8) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

추가 정보

상세이미지

파이썬으로 익히는 딥러닝 이론과 구현

새로운 지식을 배울 때 설명만 들어서는 석연치 않거나 금방 잊어버리게 됩니다. 그래서 무엇보다 ‘직접 해보는 것’이 중요합니다.
이 책은 딥러닝의 기본을 ‘이론 설명’과 ‘파이썬 구현 코드’라는 투 트랙으로 설명합니다. 각 장은 주제 하나를 설명한 후 그것을 실습할 수 있도록 꾸몄습니다. 즉, 실행되는 소스 코드를 준비했습니다. 직접 실행해보세요! 소스 코드를 읽으면서 스스로 생각하고 그 생각을 반영해 실험하다 보면 확실하게 자기 것으로 만들 수 있습니다. 여러 실험을 해보면서 겪는 시행착오 역시 큰 자산이 될 것입니다.

_예제 소스: https://github.com/WegraLee/deep-learning-from-scratch

★ 누구를 위한 책인가?
_ 외부 라이브러리는 최소한만 이용하고 파이썬을 사용해 딥러닝 프로그램을 처음부터 구현합니다.
_ 파이썬이 처음인 사람도 이해할 수 있도록 파이썬 사용법도 간략히 설명합니다.
_ 실제 동작하는 파이썬 코드와 독자가 직접 실험할 수 있는 학습 환경을 제공합니다.
_ 간단한 기계학습 문제부터 시작하여 궁극에는 이미지를 정확하게 인식하는 시스템을 구현합니다.
_ 딥러닝과 신경망 이론을 알기 쉽게 설명합니다.
_ 오차역전파법(backpropagation)과 합성곱(convolution) 연산 등 복잡해 보이는 기술을 구현 수준에서 이해할 수 있도록 설명합니다.
_ 하이퍼파라미터 결정 방식, 가중치 초깃값 등 딥러닝을 활용하는 데 도움이 되는 실용적인 기술을 소개합니다.
_ 배치 정규화, 드롭아웃, Adam 같은 최근 트렌드를 설명하고 구현해봅니다.
_ 딥러닝이 왜 뛰어난지, 층이 깊어지면 왜 정확도가 높아지는지, 은닉층이 왜 중요한지와 같은 ‘왜’에 관한 문제도 다룹니다.
_ 자율 주행, 이미지 생성, 강화학습 등, 딥러닝을 응용한 예를 소개합니다.

★ 누구를 위한 책이 아닌가?
_ 딥러닝 분야의 최신 연구에 대해서는 자세히 다루지 않습니다.
_ 카페(Caffe), 텐서플로(TensorFlow), 체이너(Chainer) 등의 딥러닝 프레임워크 사용법은 설명하지 않습니다.
_ 딥러닝, 특히 신경망에 관한 아주 상세한 이론까지는 담지 않았습니다.
_ 딥러닝의 정확도를 높이기 위한 튜닝은 자세히 설명하지 않습니다.
_ 딥러닝 성능을 높여주는 GPU 기술은 구체적으로 다루지 않습니다.
_ 주로 이미지 인식을 다룹니다. 자연어 처리, 음성 인식 등의 사례는 다루지 않습니다.

책 정보 별 바로가기 : 책정보  리뷰 (1) 가격비교 (8) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

책꼬리

책꼬리란? 함께 읽으면 좋은 책이거나, 연관된 책끼리 꼬리를 달아주는 것입니다. '밑바닥부터 시작하는 딥러닝(DEEP LEARNING FROM SCRATCH)'와 연관된 책이 있다면 책꼬리를 등록해 보세요

책 정보 별 바로가기 : 책정보  리뷰 (1) 가격비교 (8) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

한줄댓글

책속 한 구절

0/200bytes

퀵메뉴

TOP

서비스 이용정보