관련서비스

검색

검색

책 메인메뉴

책본문

종류 : 종이책

실전 예측 분석 모델링예측 모델 과정을 여행하는 데이터 분석가를 위한 안내서(양장)

저자
막스 쿤 , 키엘 존슨 지음
역자
권정민 옮김 역자평점 0.0
출판사
에이콘출판사 | 2017.12.20
형태
페이지 수 676 | ISBN
원제 : Applied Predictive Modeling
ISBN 10-1161750908
ISBN 13-9791161750903
정가
50,00045,000
가격비교 찜하기

이 책은 어때요? 0명 참여

평점 : 0 . 0

번역

번역Bad 1 2 3 4 5 6 7 8 9 10 번역Good

필독

비추 1 2 3 4 5 6 7 8 9 10 필독

이 책을 언급한 곳

리뷰 0 | 서평 0 | 블로그 0

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

정보 제공 : 교보문고 YES24 인터파크도서 영풍문고

책소개

데이터 전처리, 데이터 분할 등의 분석에 있어서 필수적으로 필요한 단계부터 모델 튜닝의 기초에 이르기까지, 전반적인 예측 모델 과정을 다룬다. 다양한 일반적인 회귀 및 분류 기법 대해 직관적으로 설명하고, 이에 대한 실제 데이터 문제를 예제로 들어 이해를 돕는다. 이를 통해 클래스 불균형, 예측 변수 선택, 모델 성능 원인 파악 등 실제 모델을 적용할 때 종종 맞닥뜨리게 되는 문제들에 대해서도 살펴볼 수 있다. 또한 각 예제에 대한 상세한 R 코드가 같이 실려 있어서 책의 내용을 실제로 실행해 보면서 학습할 수 있다. 이 책은 학부 및 석사과정의 예측 모델 수업용 교과서부터 실제 현업에서의 참고자료까지 예측 모델을 활용하고자 하는 여러 사람들이 다양하게 활용할 수 있을 것이다.

저자소개

저자 막스 쿤

저서 (총 1권)
코네티컷 주 그로턴에서 화이자 글로벌(Pfizer Global) R&D의 비임상 통계 디렉터로 일하고 있다. 15년간 약학 분야와 진단 분야에서 예측 모델을 적용해왔으며 수많은 R 패키지를 만들었다.

저자 키엘 존슨

저서 (총 1권)
약학 연구 개발 분야의 통계 컨설팅 및 예측 모델링에서 10년 이상의 경험을 쌓았다. dPcmr 모델링에 특화된 회사인 아버 애널리틱스(Arbor Analytics)의 공동 창업자이며, 전 화이자 글로벌 R&D의 통계 디렉터였다. 또한 통계 방법론과 러닝 알고리즘을 개발하고 응용하는 연구를 했다.
역서(총 1권)
역자 권정민
세상은 데이터로 이뤄져 있다고 생각하며, 이를 잘 활용하고자 하는 목표를 가지고 다양한 데이터 분석 및 활용 방안을 만들고 연구하는 것을 업으로 하고 있다. 카이스트(KAIST) 및 포항공과대학교(POSTECH)에서 산업공학과 전산학을 전공했으며, 다양한 산업군에서 데이터 분석을 수행하고 있다. 역서로는 『빅데이터 분석 도구 R 프로그래밍』(에이콘, 2012), 『The R Book(Second Edition) 한국어판』(에이콘, 2014), 『파이썬을 활용한 베이지안 통계』(한빛미디어, 2014) 등이 있으며 『인터넷, 알고는 사용하니?』(마음이음, 2017)를 감수했다.

목차

1장. 시작하며

__1.1 예측 대 해석
__1.2 예측 모델의 주 요소
__1.3 용어
__1.4 예제 데이터 세트와 일반적 데이터 시나리오
_음악 장르
_장학금 신청
_간 손상
_투과성
_화학 물질 제조 절차
_부정 재무 재표
_데이터 세트 비교
__1.5 개요
__1.6 표기법

2장. 예측 모델링 과정 훑어보기

__2.1 사례 연구: 연비 예측
__2.2 테마
_데이터 분할
_예측 데이터
_성능 추정
_여러 모델을 평가하기
_모델 선정
__2.3 요약

3장. 데이터 전처리

__3.1 사례 연구: 하이콘텐츠 스크리닝에서의 세포 분할
__3.2 개별 예측 변수에 대한 데이터 변형
_중심화와 척도화
_왜도 해결을 위한 변형
__3.3 여러 예측 변수 변형
_이상치 제거를 위한 데이터 변형
_데이터 축소와 특징 추출
__3.4 결측치 처리
__3.5 예측 변수 제거
_예측 변수 간의 상관관계3.6 예측 변수 추가
__3.7 예측 변수 구간화
__3.8 컴퓨팅
_변환
_필터링
_가변수 생성
_연습 문제

4장. 과적합과 모델 튜닝

__4.1 과적합 문제
__4.2 모델 튜닝
__4.3 데이터 분할
__4.4 리샘플링 기법
_K -겹 교차 검증
_일반화 교차 검증
_반복적 훈련/테스트 세트 분할
_부트스트랩
__4.5 사례 연구: 신용 평가
__4.6 최종 튜닝 변수 선정
__4.7 추천하는 데이터 분할 방식
__4.8 모델 선택
__4.9 컴퓨팅
_데이터 분할
_리샘플링
_R로 하는 기본적 모델 구축
_튜닝 변수 판단
_모델 간 비교
_연습 문제

5장. 회귀 모델 성능 측정

__5.1 성능의 정량적 측정
__5.2 분산-편향성 트레이드 오프
__5.3 컴퓨팅

6장. 선형 회귀와 이웃 모델들

__6.1 사례 연구 구조적 정량 활성 관계 모델링
__6.2 선형 회귀
_용해도 데이터에 대한 선형 회귀
__6.3 부분 최소 제곱
_용해도 데이터에 대한 PCR과 PLSR
_PLS의 알고리즘 분산
__6.4 벌점 모델
__6.5 컴퓨팅
_일반 선형 회귀
_부분 최소 제곱
_벌점 회귀 모델
_연습 문제

7장 비선형 회귀 모델

__7.1 신경망 모델
__7.2 다변량 가법 회귀 스플라인 모델
__7.3 서포트 벡터 머신
__7.4 K -최근접 이웃
__7.5 컴퓨팅
_신경망 모델
_다변량 가법 회귀 스플라인서포트 벡터 머신
_K-최근접 이웃
_연습 문제

8장. 회귀 트리와 규칙 기반 모델

__8.1 기본 회귀 트리
__8.2 회귀 모델 트리
__8.3 규칙 기반 모델
__8.4 배깅 트리
__8.5 랜덤 포레스트
__8.6 부스팅
__8.7 큐비스트
__8.8 컴퓨팅
_단일 트리
_모델 트리
_배깅 트리
_랜덤 포레스트
_부스티드 트리
_큐비스트
_연습 문제

9장. 용해도 모델 정리

10장. 사례 연구: 콘크리트 혼합물의 압축 강도

__10.1 모델 구축 전략
__10.2 모델 성능
__10.3 압축 강도 최적화
__10.4 컴퓨팅

11장. 분류 모델에서의 성능 측정

__11.1 클래스 분류
_잘 보정된 확률
_클래스 확률 나타내기
_중간 지대
__11.2 분류 예측 평가
_이종 문제
_비정확도 기반 기준
__11.3 클래스 확률 평가
_시스템 동작 특성(ROC) 곡선
_리프트 도표
__11.4 컴퓨팅
_민감도와 특이도
_혼동 행렬
_시스템 동작 특성 곡선
_리프트 도표
_확률 보정

12장. 판별 분석 및 기타 선형 분류 모델

__12.1 사례 연구: 성공적인 지원금 신청 예측
__12.2 로지스틱 회귀
__12.3 선형 판별 분석
__12.4 부분 최소 제곱 판별 분석
__12.5 벌점 모델
__12.6 최근접 축소 중심 모델
__12.7 컴퓨팅
_로지스틱 회귀
_선형 판별 분석
_부분 최소 제곱 판별 분석
_벌점 모델
_최근접 축소 중심법
_연습 문제

13장. 비선형 분류 모델

__13.1 비선형 판별 분석
_이차 판별 분석과 정규 판별 분석
_혼합 판별 분석
__13.2 신경망
__13.3 유연 판별 분석
__13.4 서포트 벡터 머신
__13.5 K -최근접 이웃 모델
__13.6 나이브 베이즈 모델
__13.7 컴퓨팅
_비선형 판별 분석
_신경망
_유연 판별 분석
_서포트 벡터 머신
_K-최근접 이웃 분석
_나이브 베이즈 분석
_연습 문제

14장. 분류 트리와 규칙 기반 모델

__14.1 기본 분류 트리
__14.2 규칙 기반 모델
_C4.5 규칙
_PART
__14.3 배깅 트리
__14.4 랜덤 포레스트
__14.5 부스팅
_에이다부스트
_확률 경사 부스팅
__14.6 C5.0
_분류 트리
_분류 규칙
_부스팅
_모델의 다른 측면
_보조금 데이터
__14.7 범주형 변수의 두 가지 변조 방식 비교
__14.8 컴퓨팅
_분류 트리
_규칙배깅 트리
_랜덤 포레스트
_부스티드 트리
_연습 문제

15장. 보조금 지원 모델 살펴보기

16장. 심각한 클래스 불균형 처리하기

__16.1 사례 연구: 이동식 주택 보험 가입 예측
__16.2 클래스 불균형의 영향
__16.3 모델 튜닝
__16.4 대체 한도
__16.5 사전 확률 보정
__16.6 다른 경우별 가중치
__16.7 샘플링 기법
__16.8 비용 민감 훈련
__16.9 컴퓨팅
_대체 한도
_샘플링 기법
_비용 민감 훈련
_연습 문제

17장. 사례 연구: 작업 스케줄링

__17.1 데이터 분할과 모델 전략
__17.2 결과
__17.3 컴퓨팅

18장. 예측 변수 중요도 측정하기

__18.1 수치형 결과
__18.2 범주형 결과
__18.3 다른 방법
__18.4 컴퓨팅
_수치형 결과
_변수형 결과
_모델 기반 중요도
_연습 문제

19장. 특징 선택 입문

__19.1 비정보성 예측 변수 사용의 결과
__19.2 변수 수를 줄이는 방식
__19.3 래퍼 방법
_전진, 후진, 단계적 선택법
_담금질 기법
_유전 알고리즘
__19.4 필터 방법
__19.5 선택 편향
__19.6 사례 연구: 인지 장애 예측
__19.7 컴퓨팅
_전진, 후진, 단계적 선택법
_반복 특징 제거
_필터 방법
_연습 문제

20장. 모델 성능에 영향을 미치는 요인

__20.1 삼종 오류
__20.2 결과의 측정 오차
__20.3 예측 변수에서의 측정 오차
_사례 연구: 원치 않는 부작용 예측
__20.4 연속형 결과를 이산화하기
__20.5 언제 모델의 예측값을 믿어야 할까?
__20.6 샘플이 클 때의 영향
__20.7 컴퓨팅
_연습 문제

부록 A. 여러 모델에 대한 요약

부록 B. R에 대한 소개

__1B.1 시작 및 도움말
__1B.2 패키지
__1B.3 객체 생성
__1B.4 데이터 유형과 기본 구조
__1B.5 2차원 데이터 세트로 작업하기
__1B.6 객체와 클래스
__1B.7 R 함수
__1B.8 =의 3개 얼굴
__1B.9 AppliedPredictiveModeling 패키지
__B.10 caret 패키지
__B.11 이 책에서 사용된 소프트웨어

부록 C. 유용한 웹 사이트

_소프트웨어
_대회
_데이터 세트

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

리뷰

독자리뷰(총 0건)

리뷰쓰기

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

가격비교 - 인터넷서점 45,000

가격비교
서점 판매가 → 할인가(할인율) 판매가 할인가란? 적립금(적립률) 구매정보
리브로 바로가기 50,000원45,000원(-10%) 2,500원(5%) 구매하기 무료배송 도서 10%할인, 5%추가적립, 배송 중 파손 시 100% 교환보장, 수험서 분철 990원!
인터파크 바로가기 50,000원45,000원(-10%) 2,500원(5%) 구매하기 무료배송 당일/하루배송, 최저가 200% 보장, 인터파크 통합 마일리지, 스페셜 사은품선택 서비스
교보문고 바로가기 50,000원45,000원(-10%) 2,500원(5%) 구매하기 무료배송 바로드림 최저가 보상, 바로드림/바로배송
알라딘 바로가기 50,000원45,000원(-10%) 2,500원(5%) 구매하기 무료배송 10% 할인, 신간 사은품 추첨, 1권도 무료당일배송
영풍문고 바로가기 50,000원45,000원(-10%) 2,500원(5%) 구매하기 무료배송 바로바로 신규회원 1천원지급 / 오늘수령 나우드림
도서11번가 바로가기 50,000원45,000원(-10%) 0원(0%) 구매하기 무료배송 [T멤버십 할인/최대1만원,신간도서] 3만원 이상 구매시 1,000포인트 추가 적립
반디앤루니스 바로가기 50,000원49,000원(-2%) 1,500원(3%) 구매하기 무료배송 북셀프 단 한권만 사도 무료배송, 당일배송, 매장에서 바로받는 북셀프 서비스, 최저가 보상, 신규회원 1,000원 적립
단골 인터넷 서점 등록

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

추가 정보

상세이미지

★ 이 책의 대상 독자 ★

예측 모델에 대한 소개와 모델 적용 가이드로서 광범위한 사용자를 대상으로 한다. 수학에 친숙하지 않은 독자는 기법에 대한 직관적인 설명을 반길 수 있을 것이고, 다양한 애플리케이션에서 실제 데이터로 문제를 해결하는 데 중점을 둔 내용은 전문 지식을 확장하려는 실무자에게 도움이 될 것이다. 독자는 상관 관계 및 선형 회귀 분석과 같은 기본 통계 개념에 대한 지식을 갖고 있어야 한다. 일부 복잡한 방정식을 다루며 고급 주제의 경우 수학적 배경이 필요하다.

★ 지은이의 말 ★

이 책은 예측 모델링을 실제로 활용하는 데에 특별히 초점을 맞춰 쓴 데이터 분석에 대한 책이다. '예측 모델링'이란 용어에는 머신 러닝과 패턴 인식, 데이터 마이닝 같은 개념이 뒤섞여 있으며 실제로 이런 융화는 적절하다. 이 용어들이 포함하는 기법은 예측 모델링 과정에서 반드시 필요한 부분이다. 하지만 예측 모델에는 데이터의 숨겨진 패턴을 찾기 위한 도구나 기술보다 훨씬 중요한 것들이 들어 있다. 예측 모델을 활용한다는 것은 이해할 수 있는 형태로 모델을 개발하고 아직 나타나지 않은 미래의 데이터에 대한 예측 정확성을 계측하는 과정을 말하는 것이다. 이 책에서 초점을 맞추고 있는 부분은 이런 전 과정을 말한다.
이 책이 모델을 실제 활용하고자 하는 사람들에게 예측 모델링 과정에 대한 가이드이자, 주로 사용되고 최근 나온 강력한 모델에 대한 접근 방법을 배우고 통찰을 얻을 수 있는 장소가 되게 하고자 했다. 예측 모델링을 위해 통계 및 수학 능력이 필요하다는 것은 이미 알려져 있지만, 대부분의 경우에 이런 기법의 수학적 기원이나 기반에 대해 말하는 대신 강점 및 약점을 파악해 이에 대한 통찰력을 기를 수 있는 방식으로 나타내고자 했다. 대부분의 경우 복잡한 연산을 사용하는 것은 배제하려고 노력했지만, 일부 필요한 예외의 경우도 있었다. 예측 모델링에 대해 좀 더 이론적인 내용이 필요하다면 헤이스티(Hastie) 등이 집필한 책(2008)이나 비숍(Bishop)의 책(2006)을 추천한다. 이 책을 이해하기 위해서는 분산, 상관관계, 간단한 선형 회귀, 기본 가설 검정(p-값 및 검정 통계) 등의 기본 통계 지식을 사전에 가지고 있어야 한다

★ 옮긴이의 말 ★

데이터 분석의 최종 목적은 결국 기존의 데이터를 활용해 잘 모르는 것을 ‘예측’하는 것에 있어 왔다. 흔히 ‘고급 분석’이라는 머신 러닝 알고리즘을 활용한 데이터 분석은 크게 추이를 통해 명확하지 않은 변동 상황이나 알 수 없는 미래를 ‘예측’하고, 분류를 통해 정확하지 않거나 알 수 없는 것의 성격을 ‘예측’하는 것에 초점이 맞춰져 있다. 이런 분석 기법은 흔히 ‘예측 분석’이라고 불려왔고, 데이터 분석을 하는 많은 사람들이 이 ‘예측 분석’ 기법을 실제 상황에 직접 사용해보려고 시도하고 있다. 특히 예전과 달리 학계 및 산업계에서 전반적으로 데이터에 대한 인식이 자연스러워지고, ‘머신 러닝’이나 ‘인공 지능’이라는 단어도 더 이상 생소하지 않은 시대가 되면서 머신 러닝 알고리즘과 유사한 ‘예측 분석’에도 좀 더 많은 사람들이 관심을 갖게 됐다.
이런 때에 맞춰 이 책을 번역하게 돼 매우 기쁘게 생각한다. 이 책은 실제로 충분한 지식을 갖고 예측 분석을 업계에서 직접 사용하면서, 실제로 사람들이 많이 사용할 만한 기능을 R패키지로 구현하기도 했던 훌륭한 저자들이 자신들의 지식과 노하우, 실제 분석에서 얻은 통찰까지 골고루 담아낸 책이다. 학교에서 교과서로 사용해도 될 정도로 풍부한 지식이 꼼꼼하게 들어 있으면서도, 현업에서 일을 하면서도 간간히 참고 자료로 찾아볼 수 있을 정도의 실질적인 팁이나 실무에서 접하게 되는 요소들도 놀라울 정도로 풍부하게 들어 있다. 계속 데이터를 접하는 사람이라면 이 책을 오랜 기간 옆에 두며 도움을 받을 수 있을 거라고 확신한다.
솔직히 데이터 분석에 처음 입문하는 사람이 접하기에는 난이도가 어느 정도 있는 책이다. 하지만 그만큼 배울 것이 매우 많다고 생각한다. 나 역시도 어느 정도 실무로 데이터 분석을 해왔음에도 불구하고, 이 책의 번역을 진행하면서 많은 것을 배웠고, 많은 부분에서 감탄하기도 했으며, 여러 부분에서 감동하기도 했고, 한없이 겸손해지기도 하는 등 즐거운 경험을 했다. 이 책을 접하게 되는 독자들도 나와 같은 경험을 하실 수 있기를 바라고, 아마도 충분히 그럴 수 있을 거라고 생각한다.

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

책꼬리

책꼬리란? 함께 읽으면 좋은 책이거나, 연관된 책끼리 꼬리를 달아주는 것입니다. '실전 예측 분석 모델링'와 연관된 책이 있다면 책꼬리를 등록해 보세요

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

한줄댓글

책속 한 구절

0/200bytes

퀵메뉴

TOP

서비스 이용정보