관련서비스

검색

검색

책 메인메뉴

책본문

종류 : 종이책

추천 엔진을 구축하기 위한 기본서R, 파이썬, 스파크, 머하웃, Neo4j를 이용해 추천 엔진 구축 시작하기

저자
수레시 고라칼라 지음
역자
테크 트랜스 그룹 T4 옮김
출판사
에이콘출판 | 2017.09.06
형태
페이지 수 424 | ISBN
원제 : Building Recommendation Engines
ISBN 10-1161750460
ISBN 13-9791161750460
정가
33,00029,700
가격비교 찜하기

인터넷서점 (총 7건) 더보기

이 책은 어때요? 0명 참여

평점 : 0 . 0

번역

번역Bad 1 2 3 4 5 6 7 8 9 10 번역Good

필독

비추 1 2 3 4 5 6 7 8 9 10 필독

이 책을 언급한 곳

리뷰 0 | 서평 0 | 블로그 0

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

정보 제공 : 교보문고 YES24 반디앤루니스 강컴닷컴 인터파크도서 영풍문고

책소개

R, 파이썬(Python), 스파크(Spark), 머하웃(Mahout), Neo4j 기술을 이용하여 협업 필터링, 컨텐츠 기반 추천 엔진, 상황 인지 추천 엔진과 같은 추천 엔진을 구현하는 가이드를 제공한다. 산업계에서 광범위하게 사용되는 다양한 추천 엔진들을 다루기 때문에 실무에 있어서 기본 내용들을 한눈에 파악할 수 있다. 추천 시스템을 구축할 때 일상적으로 사용되는 유명한 데이터 마이닝 기술을 파악할 수 있으며, 추천 엔진의 미래에 대해서 설명하기 때문에 추천 엔진에 대해서 많은 인사이트를 얻을 수 있도록 돕는다.

저자소개

저자 수레시 고라칼라

저서 (총 1권)
인공지능에 주력하는 데이터 과학자다. 여러 도메인의 다양한 글로벌 고객과 협력하며, 향상된 빅데이터 분석 기법을 사용해 비즈니스 문제를 해결하는 데 기여하고 있다. 추천 엔진, 자연어 처리, 고급 머신 러닝, 그래프 데이터베이스와 관련된 폭넓은 작업을 했으며, 『R로 만드는 추천 시스템』(에이콘, 2017)을 공동 저술했다. 열정적인 여행자며, 취미 생활로 사진 작가를 겸하기도 한다.

목차

1장. 추천 엔진 소개
__추천 엔진 정의
__추천 시스템의 필요성
__추천 시스템을 운영하는 빅데이터
__추천 시스템 종류
____협업 필터링 추천 시스템
____콘텐츠 기반 추천 시스템
____하이브리드 추천 시스템
____상황 인식 추천 시스템
__기술 발전에 따른 추천 시스템의 발전
____확장 가능한 추천 시스템을 위한 머하웃
____실시간 확장 가능 추천 시스템을 위한 아파치 스파크
____실시간 그래프 기반 추천 시스템을 위한 Neo4j
__요약

2장. 첫 번째 추천 엔진 구축하기
__기본 추천 엔진 구축하기
____데이터 로드 및 형식 변환
____사용자 사이의 유사도 계산
____사용자의 등급 예측
__요약

3장. 추천 엔진 이해
__추천 엔진의 진화
__최근접 이웃 기반 추천 엔진
____사용자 기반 협업 필터링
____아이템 기반 협업 필터링
____장점
____단점
__콘텐츠 기반 추천 시스템
____아이템 프로필 생성
____사용자 프로필 생성
____장점
____단점
__상황 인식 추천 시스템
____상황의 정의
____사전 필터링 방식
____사후 필터링 방식
____장점
____단점
__하이브리드 추천 시스템
____가중 방식
____혼합 방식
____캐스케이드 방식
____특징 조합 방식
____장점
__모델 기반 추천 시스템
____확률적 접근법
____머신 러닝 접근법
____수학적 접근법
____장점
__요약

4장. 추천 엔진에서 사용되는 데이터 마이닝 기법
__이웃 기반 기법
____유클리드 거리
____코사인 유사도
____자카드 유사도
____피어슨 상관계수
__수학적 모델 기법
____행렬 인수 분해
____교대 최소 제곱
____특이값 분해
__머신 러닝 기법
____선형 회귀
____분류 모델
______선형 분류
______KNN 분류
______서포트 벡터 머신
______결정 트리
______앙상블 방법
__클러스터링 기법
____K-평균 클러스터링
__차원 축소
____주성분 분석
__벡터 공간 모델
____단어 빈도
____단어 빈도-역문서 빈도
__평가 기법
____교차 검증
____정규화
______평균 제곱근 오차
______평균 절대 오차
______정확도와 재현율
__요약

5장. 협업 필터링 추천 엔진 구축하기
__RStudio에 recommenderlab 패키지 설치하기
__recommenderlab 패키지에서 사용 가능한 데이터 세트
____Jester5K 데이터 세트 탐색
______설명
______사용법
______형식
______상세 설명
__데이터 세트 탐색하기
____평가 값 탐색하기
__recommenderlab으로 사용자 기반의 협업 필터링 구축하기
____훈련 데이터와 테스트 데이터 준비하기
____사용자 기반 협업 모델 생성하기
____테스트 세트에서의 예측
____데이터 세트 분석하기
____k-교차 검증을 통한 추천 모델 평가하기
____사용자 기반 협업 필터링 평가하기
__아이템 기반 추천인 모델 구축하기
____IBCF 추천인 모델 구축하기
____모델 평가
____메트릭을 사용한 모델 정확도
____플롯을 사용한 모델 정확도
____IBCF의 매개변수 튜닝하기
__파이썬을 사용한 협업 필터링
____필요한 패키지 설치하기
____데이터 소스
__데이터 탐사
____평가 행렬 표현
____훈련과 테스트 세트 생성하기
____UBCF를 구축하는 단계
____사용자 기반 유사도 계산
____활성 사용자의 알려지지 않은 평가 예측하기
__k-최접 이웃과의 사용자 기반 협업 필터링
____최접 N 이웃 찾기
__아이템 기반 추천
____모델 평가하기
____k-최접 이웃에 대한 훈련 모델
____모델 평가하기
__요약

6장. 개인화 추천 엔진 구축하기
__개인화 추천인 시스템
__콘텐츠 기반 추천인 시스템
____콘텐츠 기반 추천 시스템 구축하기
____R을 사용한 콘텐츠 기반 추천
______데이터 세트 설명
____파이썬을 사용한 콘텐츠 기반 추천
______데이터 세트 설명
______사용자 활동
______아이템 프로필 생성
______사용자 프로필 생성
__상황 인식 추천인 시스템
____상황 인식 추천인 시스템 구축하기
____R을 사용한 상황 인식 추천
______상황 정의하기
______상황 프로필 생성하기
______상황 인식 추천 생성하기
__요약

7장. 스파크를 사용해 실시간 추천 엔진 구축하기
__스파크 2.0
____스파크 아키텍처
____스파크 구성 요소
____스파크 코어
______스파크 SQL을 이용한 구조화된 데이터
______스파크 스트리밍을 사용하는 스트리밍 분석
______MLlib를 사용하는 머신 러닝
______GraphX를 사용한 그래픽 계산
____스파크의 장점
____스파크 셋업하기
____SparkSession에 대해
____RDD
____ML 파이프라인에 대해
__교대 최소 제곱을 이용한 협업 필터링
__pyspark를 사용한 모델 기반 추천 시스템
__MLlib 추천 엔진 모듈
__추천 엔진 접근 방식
____구현 방법
______데이터 로딩
______데이터 탐색
______기본 추천 엔진 만들기
______예측하기
____사용자 기반 협업 필터링
____모델 평가
____모델 선택 및 하이퍼 매개변수 튜닝
______교차 유효성 검사
______CrossValidator
______학습 유효성 검사 분할
______ParamMaps/매개변수 설정하기
______평가자 객체 설정하기
__요약

8장. Neo4j로 실시간 추천 엔진 구축하기
__서로 다른 그래프 데이터베이스 식별
____레이블이 지정된 프로퍼티 그래프
______GraphDB 핵심 개념 이해하기
__Neo4j
____Cypher 쿼리 언어
______Cypher 쿼리 기본
____노드 문법
____관계 문법
____첫 번째 그래프 만들기
______노드 만들기
______관계 만들기
______관계에 프로퍼티 설정하기
______csv에서 데이터 불러오기
__Neo4j 윈도우 버전 설치하기
__리눅스에서 Neo4j 설치하기
____Neo4j 다운로드하기
____Neo4j 설정하기
____명령행에서 Neo4j 시작하기
__추천 엔진 만들기
____데이터를 Neo4j로 보내기
____Neo4j를 사용해 추천 정보 만들기
____유클리드 거리를 이용한 협업 필터링
____코사인 유사성을 사용한 협업 필터링
__요약

9장. 머하웃을 이용한 추천 엔진 구축하기
__머하웃: 개요
__머하웃 설정하기
____독립 모드: 라이브러리로서 머하웃 사용하기
____분산 모드용 머하웃 설정하기
__머하웃의 코어 빌딩 블록
____사용자 기반 협업 추천 엔진의 컴포넌트
____머하웃을 사용해 추천 엔진 만들기
____데이터 세트 내용
____사용자 기반의 협업 필터링
__아이템 기반의 협업 필터링
__협업 필터링 평가하기
__사용자 기반 추천인 평가
__아이템 기반 추천인 평가
__SVD 추천
__머하웃을 이용한 분산 추천
____하둡에서의 ALS 추천 방법
__확장 가능한 시스템 아키텍처
__요약

10장. 추천 엔진의 미래: 다음은 무엇일까?
__추천 엔진의 미래
__추천 엔진의 단계
____단계 1: 일반적인 추천 엔진
____단계 2: 개인화된 추천인 시스템
____단계 3: 미래 지향적 추천 시스템
______검색의 종료
______웹 검색의 종말
______웹에서의 새로운 등장
____차선책
____유스케이스 고려
______스마트 홈
______헬스케어 추천인 시스템
______추천 뉴스
__인기 있는 방법론
____세렌디피티
__추천 엔진의 시간적 측면
____A/B 테스트
____피드백 메커니즘
__요약

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

리뷰

독자리뷰(총 0건)

리뷰쓰기

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

가격비교 - 인터넷서점 29,700

가격비교
서점 판매가 → 할인가(할인율) 판매가 할인가란? 적립금(적립률) 구매정보
YES24 바로가기 33,000원29,700원(-10%) 1,650원(5%) 구매하기 무료배송 대한민국1등 인터넷서점! 총알배송, 2천원추가적립, 리뷰포인트지급, 최저가보상
영풍문고 바로가기 33,000원29,700원(-10%) 1,650원(5%) 구매하기 무료배송 바로바로 신간 무료배송 / 신규회원 1천원지급 / 영풍문고에서 페이코 첫 결제 5천원할인 / Now드림서비스
도서11번가 바로가기 33,000원29,700원(-10%) 0원(0%) 구매하기 무료배송 [T멤버십 할인/최대1만원,신간도서] 3만원 이상 구매시 1,000포인트 추가 적립
알라딘 바로가기 33,000원29,700원(-10%) 1,650원(5%) 구매하기 무료배송 10% 할인, 신간 사은품 추첨, 1권도 무료당일배송
교보문고 바로가기 33,000원29,700원(-10%) 1,650원(5%) 구매하기 무료배송 바로드림 최저가 보상, 바로드림/바로배송
인터파크 바로가기 33,000원29,700원(-10%) 1,650원(5%) 구매하기 무료배송 당일/하루배송, 최저가 200% 보장, 인터파크 통합 마일리지, 스페셜 사은품선택 서비스
반디앤루니스 바로가기 33,000원29,700원(-10%) 1,650원(5%) 구매하기 무료배송 북셀프 단 한권만 사도 무료배송, 당일배송, 매장에서 바로받는 북셀프 서비스, 최저가 보상, 신규회원 1,000원 적립
단골 인터넷 서점 등록

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

추가 정보

상세이미지

★ 이 책에서 다루는 내용 ★
■ 첫 번째 추천 엔진 구축 방법
■ 추천 엔진을 구축하는 데 필요한 도구
■ 공동 작업, 콘텐츠 기반 및 교차 추천과 같은 추천 시스템의 다양한 기법
■ 업무를 쉽게 할 수 있는 효율적인 의사 결정 시스템
■ 다양한 프레임워크에서의 머신 러닝 알고리즘
■ 실제 코드 예제를 사용한 다양한 버전의 추천 엔진 마스터링
■ 다양한 추천 시스템의 탐색과 R, 파이썬, 스파크 등의 기술을 이용하는 구현 방법

★ 이 책의 대상 독자 ★
이 책은 R, 파이썬, 스파크, Neo4j, 하둡을 사용한 추천 엔진과 복잡한 예측 의사 결정 시스템을 이해하고 구축하려는 초보자나 관련 경험이 있는 데이터 과학자를 대상으로 한다.

★ 이 책의 구성 ★
1장. '추천 엔진 소개'에서는 데이터 과학자들에게 추천 기능에 대해 다시 설명하고, 초보자들을 위해 추천 엔진을 다룬다. 그리고 사람들이 일상생활에서 사용하는 인기 있는 추천 엔진을 소개하고 인기 있는 추천 엔진의 장점과 단점을 살펴본다.
2장. '첫 번째 추천 엔진 구축하기'에서는 추천 엔진의 세계로 떠나기 전에 영화 추천 엔진을 어떻게 만드는지 간단히 살펴본다.
3장. '추천 엔진 이해'에서는 사용자 기반 협업 필터링 추천 엔진, 항목 기반 협업 필터링, 콘텐츠 기반 추천 엔진, 컨텍스트 기반 추천인(recommender), 하이브리드 추천인, 머신 러닝 모델 및 수학 모델과 같은 모델 기반 추천인 시스템 등 널리 사용되는 다양한 권장 엔진 기술을 설명한다.
4장. '추천 엔진에서 사용되는 데이터 마이닝 기법'에서는 유사성 측정, 분류, 회귀, 차원 축소 기술과 같은 추천 엔진 구축에서 사용되는 다양한 머신 러닝 기술을 다룬다. 추천 엔진의 예측 성능을 테스트하는 평가 측정 항목도 설명한다.
5장. '협업 필터링 추천 엔진 구축하기'에서는 R과 파이썬에서 사용자 기반 협업 필터링과 항목 기반 협업 필터링을 작성하는 방법을 다룬다. 또한 R과 파이썬에서 사용할 수 있는 다양한 라이브러리도 살펴본다. 이 라이브러리는 추천 엔진 구축 시에 광범위하게 사용된다.
6장. '개인화 추천 엔진 구축하기'에서는 R과 파이썬, 그리고 콘텐츠 기반 추천 시스템 및 상황 인식 권장 엔진을 작성하는 데 사용되는 다양한 라이브러리를 사용해 개인화 추천 엔진을 만드는 방법을 설명한다.
7장. '스파크를 사용해 실시간 추천 엔진 구축하기'에서는 실시간 추천 시스템을 구축하는 데 필요한 스파크 및 MLlib의 기본에 대해 설명한다.
8장. 'Neo4j로 실시간 추천 엔진 구축하기'에서는 graphDB와 Neo4j의 기본 개념을 살펴보고 Neo4j를 사용해 실시간 추천 시스템을 구축하는 방법을 설명한다.
9장. '머하웃을 이용한 추천 엔진 구축하기'에서는 확장 가능한 추천 시스템을 구축하는 데 필요한 하둡과 머하웃의 기본 빌딩 블록에 대한 내용을 다룬다. 또한 머하웃과 SVD를 사용해 확장 가능한 시스템을 구축하고, 단계별로 구현하는 데 필요한 아키텍처 관련 내용도 다룬다.
10장. '추천 엔진의 미래: 다음은 무엇일까?'에서는 이전까지 배운 내용을 요약해 설명한다. 그리고 의사 결정 시스템 구축에 사용되는 사례와 추천 시스템의 미래 모습도 살펴본다.

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

책꼬리

책꼬리란? 함께 읽으면 좋은 책이거나, 연관된 책끼리 꼬리를 달아주는 것입니다. '추천 엔진을 구축하기 위한 기본서'와 연관된 책이 있다면 책꼬리를 등록해 보세요

책 정보 별 바로가기 : 책정보  리뷰 (0) 가격비교 (7) 추가정보  책꼬리 (0) 한줄댓글 (0) 맨위로

한줄댓글

책속 한 구절

0/200bytes

퀵메뉴

TOP

서비스 이용정보